

Metalation of Arylmethyl Alkyl Ethers

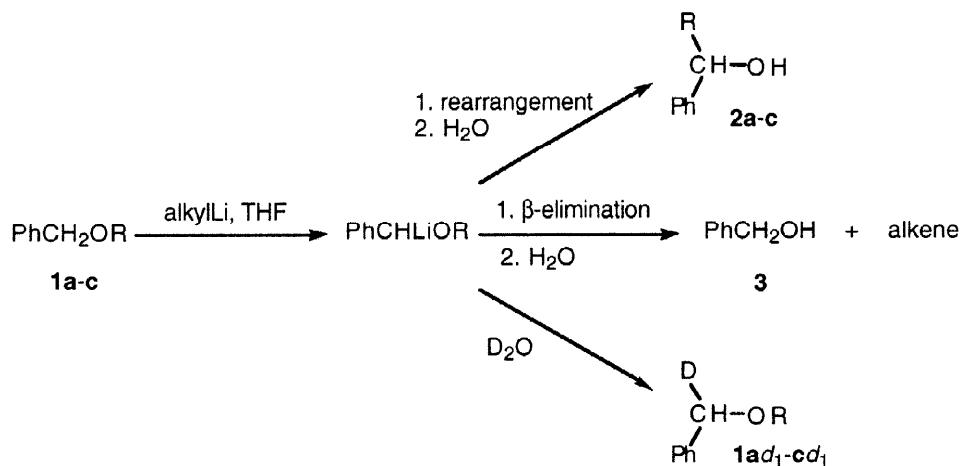
Ugo Azzena,* Luciano Pilo, Alessandra Sechi

Dipartimento di Chimica, Università di Sassari, via Vienna 2, I - 07100 Sassari (Italy)

Received 19 May 1998; revised 28 July 1998; accepted 5 August 1998

Abstract. Arylmethyl alkyl ethers **1a-1l** were metallated with *n*-BuLi or *sec*-BuLi in THF at different temperatures, affording α -alkoxy-substituted arylmethylolithium derivatives. At low temperature, the organometallics derived from methyl and isopropyl ethers are sufficiently stable to react with added electrophiles affording the expected products **4aa-4jb**. On the contrary, under similar conditions, lithium derivatives of primary alkyl benzyl ethers rapidly decay to benzyl alcohol **3**. © 1998 Elsevier Science Ltd. All rights reserved.

'Keywords': Lithium and compounds; metallation; elimination reactions; rearrangements


The generation of α -alkoxy-substituted arylmethyl carbanions is the subject of controversial reports in the chemical literature. Indeed, Yeh reported some experiments showing α -lithiation of benzyl methyl ether with *n*-BuLi in hexane/TMEDA followed by trapping of the intermediate carbanion with electrophiles [1], but other authors pointed out the relative instability of similar organometallics, especially when generated in THF. Under these conditions, 1,2-Wittig rearrangement or β -elimination of such carbanions are expected to produce alkoxides. Schöllkopf [2,3] and Landsbury [4] independently investigated the rearrangement of α -metallated alkyl benzyl ethers and established that migratory aptitudes of alkyl residues increase with the relative stability of the resulting radicals (*e.g.*, methyl < ethyl < isopropyl < *tert*-butyl). Furthermore, they investigated the competing decay of metalated primary and secondary alkyl benzyl ethers to alkenes and benzyl alcohol, and found that α -metallated benzyl *n*-alkyl ethers are more prone to β -elimination than α -metallated benzyl *sec*-alkyl ethers [3,4]. Following these findings, other groups developed elaborate procedures to generate synthetic analogues of these carbanions [5-7]. Further improvement of one of these procedures (*i.e.*, metallation of (benzyl methyl ether)tricarbonyl-chromium(0) [5]) led to the development of asymmetric functionalization of the benzylic methylene group [8].

On the other hand, we have reported that stable α -methoxy-arylmethylolithium derivatives can be generated in THF at -40 °C either by the reductive cleavage of aromatic dimethyl acetals [9], or by the metalation of methyl arylmethyl ethers with alkylolithium bases [10]. More recently, Krief reported the successful generation of α -methoxy- α -phenylalkyllithium derivatives by C-Se bond exchange with *t*-BuLi in THF at -78 °C [11,12].

Given that the deaggregation of organometallics by a coordinated solvent like THF is of prime importance for their reactivity [13,14], we wish now to report full experimental details concerning the metalation of several arylmethyl alkyl ethers in THF and to show that, besides the choice of suitable alkyl substituents, a careful control of reaction time and temperature is critical to avoid side reactions.

Results and Discussion

Arylmethyl alkyl ethers were synthesized according to known procedures: ethers **1a-1c** and **1j** were obtained by reaction of arylmethyl chlorides with sodium alkoxide in the corresponding alcohol [15]; methyl ethers **1d-1i** were synthesized by the reaction of sodium arylmethoxides with CH_3I [16]; the chloroether **1l** was obtained by reaction of benzyl 3-hydroxypropyl ether with thionyl chloride [17]. Metalations were carried out under Ar in the presence of an excess (1.2 - 2.8 equiv) of *n*-BuLi or *sec*-BuLi in dry THF.

Scheme 1: **1a**, **2a**, R = CH_3 ; **1b**, **2b**, R = C_2H_5 ; **1c**, **2c**, R = $\text{CH}(\text{CH}_3)_2$

β -Elimination is possible only for compounds **1b** and **1c**

*Metalation of Benzyl Alkyl Ethers **1a-c**.*

We first investigated the behaviour under different metalation conditions of benzyl methyl ether **1a**, of benzyl ethyl ether **1b** (a primary alkyl benzyl ether) and of isopropyl benzyl

ether **1c** (a secondary alkyl benzyl ether) to gain insights into the influence of the alkyl chain on the metalation reaction. The results are reported in Table 1 (Scheme 1).

Methyl ether **1a**, was metalated with 1.2 to 2 equiv of alkylolithium in dry THF and the resulting mixtures were quenched with H₂O or D₂O. Crude products were subjected to ¹H-NMR spectroscopic analyses to determine the relative amounts of starting material and of Wittig rearrangement product (1-phenylethanol **2a**). Our results show that compound **2a** is the main product of a room temperature reaction whilst, at -20 °C, its relative amount decreases to 24% (Table 1, entries 1 and 2). The intermediate formation of α -methoxy- α -phenyllithium is almost quantitative at -40 °C within 1 h reaction time (Table 1, entries 3 and 4). More prolonged reaction times led to slow protonation of the above mentioned organometallic derivative, as well as to the formation of significant amounts of **2a** (Table 1, entries 5 and 6).

Metalation of benzyl ethyl ether **1b**, afforded different results. Indeed, reaction of **1b** with 1.2 equiv of *n*-BuLi at -40 °C for 1 h in THF gave both the rearranged product (1-phenyl-1-propanol **2b**) and the product of β -elimination (benzyl alcohol **3**) in *ca.* 1 : 4.4 ratio (Table 1, entry 7). Lowering the temperature to -80 °C completely suppressed the rearrangement of the intermediate carbanion, but not the β -elimination reaction path, as demonstrated by the recovery of significant amounts of alcohol **3** (Table 1, entry 8).

Table 1.

Products Distribution in the Metalation Reaction of Compound **1a-1c**

Entry	Compd	Equiv of <i>n</i> -BuLi	T (°C)	t (h)	Product Distribution (%) ^a		
					1 (%D) ^b	2	3
1	1a	2	25	1	-	71 ^c	-
2	1a	2	-20	1	76 (>95)	24	-
3	1a	2	-40	1	>95 (>95)	<5	-
4	1a	1.2	-40	1	>95 (>95)	<5	-
5	1a	2	-40	6	92 (92)	8	-
6	1a	2	-40	24	78 (73)	22	-
7	1b	1.2	-40	1	30 (n.d.)	13	57
8	1b	1.2	-80	3	46 (28)	-	26
9	1c	1.4 ^d	-40	1	-	28	72
10	1c	1.4 ^d	-80	3	>95 (>95)	-	<5

^aProduct distribution was determined by ¹H NMR spectroscopic analyses of crude reaction mixtures, unless otherwise indicated.

^bAs determined by ¹H NMR spectroscopy by monitoring the percentage of deuterium incorporation in the benzylic position after D₂O quenching; n.d. means not determined.

^cIsolated yield.

^d*Sec*-BuLi was employed instead of *n*-BuLi.


Metalation of isopropyl benzyl ether **1d**, with *sec*-BuLi in THF at -40 °C for 1 h afforded both the Wittig rearrangement product (1-phenyl-2-methylpropanol **2c**) and alcohol **3** in *ca.* 1 : 2.5 ratio (Table 1, entry 9). Lowering the temperature to -80 °C completely suppressed the rearrangement of the intermediate organometallic species and reduced formation of alcohol **3** to a minimal amount. Under these reaction conditions, formation of α -metallated isopropyl benzyl ether is quantitative (Table 1, entry 10).

Our results show that reaction temperature is a crucial parameter in the generation of stable α -metallated alkyl benzyl ethers. Working at low temperature is generally useful to avoid their 1,2-rearrangement, as well as β -elimination of secondary alkyl benzyl ethers, but ineffective in avoiding β -elimination of α -metallated *n*-alkyl benzyl ethers. The last finding is in agreement with the observations on the relative propensity towards β -elimination of α -metallated benzyl alkyl ethers reported by Schöllkopf and Landsbury (see above) [2,4].

Metalation/Electrophilic Substitution of Arylmethyl Alkyl Ethers.

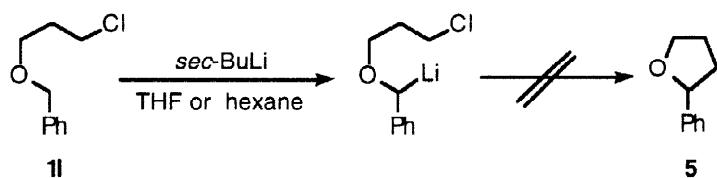
To improve the usefulness of the above results, we investigated the alkylolithium promoted electrophilic substitution of several arylmethyl alkyl ethers. We performed the metalations as described above, and quenched the reaction mixtures with D₂O (2 mL) or with 1.1 equiv of other electrophiles, before work up and purification. The results are reported in Table 2 (Scheme 2). We were able to trap the organometallic generated by the action of *n*-BuLi or *sec*-BuLi on **1a** at -40 °C with CH₃I (Table 2, entry 1), with primary and secondary alkyl halides (Table 2, entries 2 and 3), with ethylene oxide (Table 2, entry 4), with enolizable and non-enolizable carbonyl derivatives (Table 2, entries 5 and 6). Similarly, quenching with *n*-BuBr the reaction mixture obtained by the metalation of **1c** at -80 °C afforded the desired product in satisfactory yield (Table 2, entry 7).

We have also investigated the behaviour, under similar conditions, of alkyl- (**1d**, **1e**), alkoxy- (**1f**-**1h**) and halo- (**1i**, **1j**) substituted arylmethyl methyl ethers. In all cases, we found conditions leading to the formation of stable α -metallated arylmethyl methyl ethers in quantitative to satisfactory yields, as evidenced by the results of the metalation/substitution reactions reported (Table 2, entries 8-23). All methyl ethers were metallated at -40 °C, with the exception of compounds **1h**-**1j** (Table 2, entries 17-23), requiring a lower reaction temperature to afford the desired products in satisfactory yields.

Scheme 2. Reagents: i, AlkylLi excess, THF; ii, EX, then H₂O

Table 2

Metalatation/Electrophilic Substitution of Arylmethyl Alkyl Ethers **1a, 1c-j**


Entry	Compd	R ¹ = ^a	AlkylLi (equiv)	T (°C)	t (h)	EX ^b	Product, E =	Yield (%) ^c
1	1a	H	<i>sec</i> -BuLi (1.2)	-40	1	CH ₃ I	4aa , CH ₃	87
2	1a	H	<i>n</i> -BuLi (1.2)	-40	1	C ₄ H ₉ Br	4ab , C ₄ H ₉	68
3	1a	H	<i>sec</i> -BuLi (1.2)	-40	1	(CH ₃) ₂ CHBr	4ac , (CH ₃) ₂ CH	61
4	1a	H	<i>n</i> -BuLi (1.2)	-40	1	ethylene oxide ^d	4ad , CH ₂ CH ₂ OH	45
5	1a	H	<i>n</i> -BuLi (1.2)	-40	1	(CH ₃) ₂ CO	4ae , (CH ₃) ₂ COH	53
6	1a	H	<i>n</i> -BuLi (1.2)	-40	1	(C ₆ H ₅) ₂ CO	4af , (C ₆ H ₅) ₂ COH	76
7	1c	H ^e	<i>sec</i> -BuLi (1.4)	-80	3	C ₄ H ₉ Br	4ca , C ₄ H ₉	79
8	1d	4-CH ₃	<i>n</i> -BuLi (1.2)	-40	1	D ₂ O	4da , D	90 ^f
9	1d	4-CH ₃	<i>sec</i> -BuLi (1.2)	-40	1	CH ₃ I	4db , CH ₃	>95
10	1d	4-CH ₃	<i>n</i> -BuLi (1.2)	-40	1	C ₄ H ₉ Br	4dc , C ₄ H ₉	80
11	1e	2-CH ₃	<i>n</i> -BuLi (1.2)	-40	1	D ₂ O	4ea , D	88 ^f
12	1e	2-CH ₃	<i>sec</i> -BuLi (1.2)	-40	1	CH ₃ I	4eb , CH ₃	86
13	1f	4-CH ₃ O	<i>sec</i> -BuLi (1.4)	-40	5	D ₂ O	4fa , D	80 ^f
14	1f	4-CH ₃ O	<i>sec</i> -BuLi (1.4)	-40	5	C ₄ H ₉ Br ^g	4fb , C ₄ H ₉	77
15	1g	2-CH ₃ O	<i>n</i> -BuLi (1.2)	-40	1	D ₂ O	4ga , D	85 ^f
16	1g	2-CH ₃ O	<i>n</i> -BuLi (1.2)	-40	1	C ₄ H ₉ Br	4gb , C ₄ H ₉	80
17	1h	3,5-(CH ₃ O) ₂	<i>sec</i> -BuLi (1.2)	-80	4	D ₂ O	4ha , D	91 ^f
18	1h	3,5-(CH ₃ O) ₂	<i>sec</i> -BuLi (1.3)	-80	4	C ₄ H ₉ Br	4hb , C ₄ H ₉	72
19	1i	4-Cl	<i>sec</i> -BuLi (1.2)	-80	4	D ₂ O	4ia , D	>95 ^f
20	1i	4-Cl	<i>sec</i> -BuLi (1.2)	-80	4	<i>t</i> -BuCHO	4ib , <i>t</i> -BuCHOH	87 ^h
21	1i	4-Cl	<i>sec</i> -BuLi (1.2)	-80	4	PhCHO	4ic , PhCHOH	68 ⁱ
22	1j	4-F	<i>sec</i> -BuLi (2.8)	-80	7	(CH ₃) ₃ SiCl	4ja , (CH ₃) ₃ Si	68 ^l
23	1j	4-F	<i>sec</i> -BuLi (2.8)	-80	7	Cl(CH ₂) ₄ Cl	4jb , Cl(CH ₂) ₄	35

^aR = CH₃, unless otherwise indicated.^bReaction time = 10 min.^cIsolated yields, unless otherwise noted.^dGaseous ethylene oxide was bubbled into the reaction mixture for 5 min.^eR = (CH₃)₂CH.^fAs determined by ¹H NMR spectroscopy by monitoring the percentage of deuterium incorporation in the benzylic position after D₂O quenching.^gThe electrophile was added at -80 °C.^hA diastereoisomeric mixture (65:35 by ¹H NMR spectroscopy) was obtained.ⁱA diastereo-isomeric mixture (58:42 by ¹H NMR spectroscopy) was obtained.^lAs determined by ¹H NMR spectroscopic analysis of the crude reaction mixtures.

The regioselectivity observed in the metalation of substituted arylmethyl methyl ethers reported above deserves some comments. Careful inspection of ^1H NMR spectra of crude reaction mixtures shows that toluene derivatives **1d** and **1e** were regioselectively metalated at the ethereal benzylic position, with no evidences of substitution at the methyl group.

Similarly, otherwise substituted arylmethyl methyl ethers were regioselectively metalated too, with no evidence of substitution at the aromatic ring, and we conclude that ring proton abstraction is not a serious drawback of these reactions. These are interesting findings, in view of the known competition between lateral and ring proton abstraction observed in the metalation of substituted toluenes [13,18], and show that the ether moiety is a very effective metalation director in arylmethyl substitution chemistry [19]. From this point of view, it is of interest to recall that, according to commonly accepted definitions, alkoxy-, fluorine- and chlorine-substituents are considered *ortho*-directing metalation groups of moderate strength [20], and that regioselective metalation of the methyl group of, *e.g.*, fluoro- or methoxy-substituted toluenes cannot be achieved with simple alkylolithium reagents, but requires the employment of the more complex butyllithium/diisopropylamine/potassium *tert*-butoxide base (LIDAKOR) [18,19, 21,22].

Finally, we have investigated the metalation reaction of 3-chloropropyl benzyl ether **1l**, as an attempt to trap, by means of intramolecular alkylation, a primary α -alkoxy- α -benzylolithium (Scheme 3). However, metalation of **1l** under various reaction conditions (THF, -80°C , 2h; hexane, -40°C , 4h) afforded an intermediate carbanion which undergoes a very rapid β -elimination to benzyl alcohol **3**, so that we were unable to observe the formation of the desired 2-phenyltetrahydrofuran, **5** [23].

Scheme 3. Attempted metalation/intramolecular electrophilic substitution of compound **1l**

It is therefore evident that, under the reported set of reaction conditions, β -elimination is an unavoidable reaction path of primary α -alkoxy- α -arylmetallolithium derivatives.

EXPERIMENTAL PART

General.

Boiling and melting points are uncorrected; the air bath temperature on bulb-to-bulb distillations are given as boiling points. Starting materials were of the highest commercial quality and were used without further purification. D_2O was 99.8% isotopic purity. THF

was distilled from Na/K alloy under N₂ immediately prior to use. Ethers were prepared according to general procedures described in references 15 (**1a-c, 1j**), 16 (**1d-1i**) and 17 (**1l**). ¹H NMR spectra were recorded at 300 MHz and ¹³C NMR spectra were recorded at 75 MHz in CDCl₃ with SiMe₄ as internal standard. Deuterium incorporation was calculated by monitoring the ¹H NMR spectra of the crude mixtures and comparing the integration of the signal corresponding to the protons in the arylmethyl position with that of known signals. Resonances of the CHD protons are usually shifted 0.02–0.04 ppm (δ) upfield relative to the resonances of the corresponding arylmethyl CH₂ protons. Elemental analyses were performed by the Microanalytical Laboratory of the Dipartimento di Chimica, Università di Sassari.

Metalation of Ethers I and Reaction with Electrophiles. General Procedure.

The substrate (10 mmol) was dissolved under Ar in dry THF (20–30 mL) and chilled to the temperature reported in Table 1 or 2. To this mixture 1.2–2.8 equiv of a solution of the appropriate alkylolithium reagent (*n*-BuLi 1.6 M in hexane; *sec*-BuLi 1.3 M in cyclohexane) was added. After stirring for the reported time, the appropriate electrophile (1.1 equiv), dissolved in dry THF (5 mL), was added dropwise. After stirring for 10 minutes, the mixture was quenched by slow dropwise addition of H₂O (10 mL, *caution!*), the cold bath removed, and the resulting mixture extracted with Et₂O (3 x 30 mL). The organic phase was dried (Na₂SO₄) and the solvent evaporated. Crude products were purified by distillation or flash chromatography (silica gel, hexane/AcOEt). Compounds **4aa** [24], **4ab** [1] and **4af** [1], have already been described. Other products were purified and characterized as follows.

1-Phenyl-2-methylpropyl Methyl Ether (4ac). Purified by flash chromatography (hexane/AcOEt = 9:1); bp 95 °C/10 mmHg; δ _H 0.65 (3 H, d, *J* = 6.8 Hz, CH₃C), 0.91 (3 H, d, *J* = 6.8 Hz, CH₃C), 1.84 (1 H, oct, *J* = 6.8 Hz, CH), 3.11 (3 H, s, CH₃O), 3.67 (1 H, d, *J* = 6.8 Hz, CHO), 7.14–7.28 (5 H, m, ArH); δ _C 18.9, 18.9, 34.7, 56.9, 89.7, 127.3, 127.4, 128.0, 141.0; Anal. Calcd. for C₁₁H₁₆O: C, 80.42; H, 9.84. Found: C, 80.67; H, 10.03.

1-Phenyl-3-hydroxypropyl Methyl Ether (4ad). Purified by flash chromatography (hexane/AcOEt = 7:3); bp 160 °C/10 mmHg; ν (CCl₄) 3632 and 3528 (OH) cm⁻¹; δ _H 1.80–1.92 (1 H, m, CH-H), 1.98–2.12 (1 H, m, CH-H), 2.62, (1 H, br s, OH), 3.24 (3 H, s, CH₃), 3.78 (2 H, t, *J* = 5.4 Hz, CH₂O), 4.39 (1 H, dd, *J* = 4.5, 4.2 Hz, CH), 7.28–7.38 (5 H, m, ArH); δ _C 40.4, 56.6, 61.2, 83.9, 126.5, 127.7, 128.5, 141.4; identical in all respects to an authentic sample synthesized according to a general procedure described in ref. 6.

1-Phenyl-2-methyl-2-hydroxypropyl Methyl Ether (4ae). Purified by fractional distillation; bp 195 °C/10 mmHg; ν (neat) 3456 (OH) cm⁻¹; δ _H 1.00 (3 H, s, CH₃C), 1.07 (3 H, s, CH₃C), 2.38 (1 H, br s, OH), 3.19 (3 H, s, CH₃O), 3.91 (1 H, s, CH), 7.18–7.29 (5 H, m, ArH); δ _C 24.0, 26.0, 57.4, 72.8, 90.7, 127.8, 127.9, 128.1, 137.9; Anal. Calcd. for C₁₁H₁₆O₂: C, 73.28; H, 8.96. Found: C, 73.12; H, 9.07.

1-Phenylpentyl Isopropyl Ether (4ca). Purified by flash chromatography (hexane/AcOEt = 9.5:0.5); bp 75 °C/1 mmHg; δ_H 0.87 (3 H, t, J = 6.9 Hz, CH_3CH_2), 1.07 (3 H, d, J = 6.3 Hz, CH_3CH), 1.14 (3 H, d, J = 6.3 Hz, CH_3CH), 1.19-1.41 (4 H, m, $(CH_2)_2$), 1.52-1.80 (2 H, m, CH_2), 3.45 (1 H, sept, J = 6.3 Hz, $CH(CH_3)_2$), 4.29 (1 H, dd, J = 9 Hz, 5.4 Hz, CH), 7.22-7.36 (5 H, m, ArH); δ_C 14.0, 21.2, 22.6, 23.5, 28.2, 38.6, 68.7, 79.3, 126.6, 127.1, 128.2, 144.1; Anal. Calcd. for $C_{14}H_{22}O$: C, 81.48; H, 10.77. Found: C, 81.76; H, 10.45.

1-(4-Methylphenyl)ethyl Methyl Ether (4db). Purified by flash chromatography (hexane/AcOEt = 9.5:0.5); bp 80 °C/10 mmHg; δ_H 1.42 (3 H, d, J = 6.6 Hz, CH_3), 2.35 (3 H, s, CH_3Ar), 3.21 (3 H, s, CH_3O), 4.26 (1 H, q, J = 6.6 Hz, CH), 7.15-7.22 (4 H, m, ArH); identical in all respects to an authentic sample synthesized according to a general procedure described in ref. 6.

1-(4-Methylphenyl)pentyl Methyl Ether (4dc). Purified by flash chromatography (hexane/AcOEt = 9.5:0.5); bp 125 °C/10 mmHg; δ_H 0.86 (3 H, t, J = 7.2 Hz, CH_3), 1.18-1.40 (4 H, m, $(CH_2)_2$), 1.55-1.68 (1 H, m, $CHCHO$), 1.72-1.77 (1 H, m, $CHCHO$), 2.35 (3 H, s, CH_3Ar), 3.18 (3 H, s, CH_3O), 4.26 (1 H, m, CHO), 7.16 (4 H, br s, ArH); δ_C 14.0, 21.1, 22.6, 28.0, 37.9, 56.5, 84.0, 126.7, 129.0, 137.0, 139.4; identical in all respects to an authentic sample synthesized according to a general procedure described in ref. 6.

1-(2-Methylphenyl)ethyl Methyl Ether (4eb). Purified by distillation, bp 80 °C/10 mmHg; δ_H 1.40 (3 H, d, J = 6.6 Hz, CH_3), 2.33 (3 H, s, CH_3Ar), 3.23 (3 H, s, CH_3O), 4.56 (1 H, q, J = 6.6 Hz, CH), 7.12-7.25 (3 H, m, ArH), 7.37-7.41 (1 H, m, ArH); identical in all respects to an authentic sample synthesized according to a general procedure described in ref. 6.

1-(4-Methoxyphenyl)pentyl Methyl Ether (4fb). Purified by flash chromatography (hexane/AcOEt = 9:1); bp 95 °C/1 mmHg; δ_H : 0.86 (3 H, t, J = 7.2 Hz, CH_3CH_2), 1.12-1.40 (4 H, m, $(CH_2)_2$), 1.52-1.66 (1 H, m, CH), 1.74-1.87 (1 H, m, CH), 3.17 (3 H, s, CH_3OCH), 3.81 (3 H, s, CH_3OAr), 4.02 (1 H, t, J = 6.9 Hz, CHO), 6.86-6.91 (2 H, m, ArH), 7.17-7.22 (2 H, m, ArH); δ_C : 14.0, 22.6, 28.0, 37.8, 55.1, 56.3, 83.6, 113.6, 127.8, 134.4, 158.9. Anal. Calcd. for $C_{13}H_{20}O_2$: C, 74.94; H, 9.70. Found: C = 75.06; H, 9.78.

1-(2-Methoxyphenyl)pentyl Methyl Ether (4gb). Purified by flash chromatography (hexane/AcOEt = 7:3); bp 100 °C/1 mmHg; δ_H : 0.87 (3 H, t, J = 6.6 Hz, CH_3CH_2), 1.28-1.35 (4 H, m, $(CH_2)_2$), 1.64-1.67 (2 H, m, CH), 3.23 (3 H, s, CH_3OCH), 3.82 (3 H, s, CH_3OAr), 4.60 (1 H, t, J = 6.0 Hz, CHO), 6.86 (1 H, dd, J = 8.4, 1.0 Hz, ArH), 6.98 (1 H, td, J = 8.4, 1.5 Hz, ArH), 7.23 (1 H, td, J = 8.0, 1.5 Hz, ArH), 7.32 (1 H, dd, J = 6.4, 1.5 Hz, ArH); δ_C : 14.0, 22.6, 27.9, 36.7, 55.2, 56.7, 77.2, 110.2, 120.6, 126.4, 127.8, 130.8, 157.0. Anal. Calcd. for $C_{13}H_{20}O_2$: C, 74.94; H, 9.70. Found: C = 75.10; H, 9.63; identical in all respects to an authentic sample synthesized according to a general procedure described in ref. 6.

1-(3,5-Dimethoxyphenyl)pentyl Methyl Ether (4hb). Purified by flash chromatography (hexane/AcOEt = 8:2); bp 145 °C/1 mmHg; δ_H : 0.87 (3 H, t, J = 7.0 Hz

CH₃), 1.18-1.42 (4 H, m, (CH₂)₂), 1.54-1.68 (1 H, m, CH), 1.72-1.84 (1 H, m, CH), 3.22 (3 H, s, CH₃OCH), 3.80 (6 H, s, 2 x CH₃OAr), 4.00 (1 H, dd, *J* = 5.7, 7.2 Hz, ArCH), 6.37 (1 H, t, *J* = 2.4 Hz, ArH), 6.45 (2 H, d, *J* = 2.4 Hz ArH); δ_C: 14.0, 22.6, 28.0, 37.8, 55.3, 56.7, 84.2, 99.2, 104.5, 145.3, 160.8. Anal. Calcd. for C₁₄H₂₂O₃: C, 70.54; H, 9.32. Found: C = 70.61; H, 9.28.

1-(4-Chlorophenyl)-2-hydroxy-3,3-dimethylbutyl Methyl Ether (4ib). Purified by flash chromatography (hexane/AcOEt = 9:1); first diastereoisomer eluted: bp 160 °C/1 mmHg; ν (film) 3494 (OH) cm⁻¹; δ_H 0.91 (9 H, s, C(CH₃)₃), 3.22 (3 H, s, CH₃O), 3.23 (1 H, d, *J* = 3.6 Hz, CHOH), 4.17 (1 H, d, *J* = 3.6 Hz, CHAr), 7.25-7.29 (2 H, m, ArH), 7.31-7.35 (2 H, m, ArH). δ_C 26.5, 35.0, 56.2, 81.7, 82.2, 128.5, 128.7, 133.7, 139.6. Second diastereoisomer eluted: bp 160 °C/1mmHg; ν (film) 3494 (OH) cm⁻¹; δ_H 0.91 (9 H, s, C(CH₃)₃), 3.13 (3 H, s, OCH₃), 3.51 (1 H, d, *J* = 6.0 Hz, CHOH), 4.10 (1 H, d, *J* = 6.0 Hz, CHAr), 7.25-7.29 (2 H, m, ArH), 7.31-7.35 (2 H, m, ArH); δ_C 26.6, 34.6, 56.1, 80.8, 84.4, 128.6, 130.01 134.0, 138.2. Anal. Calcd. for C₁₃H₁₉ClO₂: C, 64.31; H, 7.90. Found: C = 64.27; H, 7.98.

1-(4-Chlorophenyl)-2-hydroxy-2-phenylethyl Methyl Ether (4ic). Purified by flash chromatography (hexane/AcOEt = 8:2); first diastereoisomer eluted: bp 185 °C/1 mmHg; ν (film) 3408 (OH) cm⁻¹; δ_H 3.24 (3 H, s, CH₃O), 4.32 (1 H, d, *J* = 4.8 Hz, CH), 4.91 (1 H, d, *J* = 4.8 Hz, CH), 6.99-7.05 (2 H, m, ArH), 7.10-7.15 (2 H, m, ArH), 7.20-7.28 (5 H, m, ArH); δ_C 57.2, 76.7, 87.0, 126.9, 127.7, 127.9, 128.1, 129.3, 133.7, 135.7, 139.9. Second diastereoisomer eluted: bp 185 °C/1mmHg; ν (film) 3410 (OH) cm⁻¹; δ_H 3.29 (3 H, s, CH₃O), 4.10 (1 H, d, *J* = 8.2 Hz, CH), 4.59 (1 H, d, *J* = 8.2 Hz, ArCH), 6.88-6.95 (2 H, m, ArH), 7.00-7.06 (2 H, m, ArH), 7.15-7.20 (5 H, m, ArH); δ_C 57.0, 78.6, 88.6, 127.3, 127.9, 128.0, 128.3, 129.0, 133.8, 136.1, 138.9. Anal. Calcd. for C₁₅H₁₅ClO₂: C, 68.56; H, 5.77. Found: C = 68.39; H, 5.82.

(4-Fluorophenyl)trimethylsilylmethyl Methyl Ether (4ja). Purified by flash chromatography (hexane/CH₂Cl₂ = 6:4); bp 160 °C/760 mmHg; δ_H -0.05 (9 H, s, Si(CH₃)₃), 3.26 (3 H, s, CH₃O), 3.89 (1 H, s, CH), 6.94-7.03 (2 H, m, ArH), 7.04-7.13 (2 H, m, ArH); δ_C 59.1, 80.1, 115.1 (d, *J* = 21 Hz), 127.1 (d, *J* = 8 Hz), 136.9 (d, *J* = 3 Hz), 162.8 (d, *J* = 243 Hz). Anal. Calcd. for C₁₁H₁₇FOSi: C, 62.21; H, 8.08. Found: C = 61.96; H, 8.11.

1-(4-Fluorophenyl)-4-chloropentyl Methyl Ether (4jb). Purified by flash chromatography (hexane/AcOEt = 8:2); bp 145 °C/1 mmHg; ν (film) 1220 (ArF) cm⁻¹; δ_H 1.30-1.87 (6 H, m, (CH₂)₃), 3.19 (3 H, s, CH₃), 3.50 (2 H, t, *J* = 6.6 Hz, CH₂Cl), 4.07 (1 H, dd, *J* = 7.5, 5.4 Hz, CH), 6.99-7.08 (2 H, m, ArH), 7.21-7.28 (2 H, m, ArH); δ_C 23.2, 32.5, 37.4, 44.9, 56.6, 83.1, 115.2 (d, *J* = 22 Hz), 128.2 (d, *J* = 8 Hz), 137.8 (d, *J* = 3 Hz), 162.2 (d, *J* = 244 Hz). Anal. Calcd. for C₁₂H₁₆ClFO: C, 62.46; H, 7.00. Found: C = 62.25; H, 7.08.

Acknowledgments: We are indebted to the Ministero dell'Università e Ricerca Scientifica (MURST, 60% funds) and to the Regione Autonoma della Sardegna (L.R. n. 43) for financial support. L. P. and A. S. are the recipients of a fellowship from R.A.S.

REFERENCES

- [1] Yeh MK J. Chem. Soc., Perkin Trans. 1 1981; 1652-1653.
- [2] Schöllkopf U. Angew. Chem., Int. Ed. Engl. 1970; 9: 763-773, and references therein.
- [3] Schäfer H, Schöllkopf U, Walter D. Tetrahedron Lett. 1968; 2809-2814.
- [4] Landsbury PT, Pattison VA, Sidler JD, Bieber JB. J. Am. Chem. Soc. 1966; 88: 78-84, and references therein.
- [5] Blagg, J, Davies SG, Holman NJ, Laughton CA, Mobbs BE. J. Chem. Soc., Perkin Trans. 1 1986; 1581-1589.
- [6] Katritzky AR, Fan W-Q, Akutagawa K. Synthesis 1987; 415-417.
- [7] Hoffman RW, Rühl T, Harbach, J. Liebigs Ann. Chem. 1992; 725-730.
- [8] Cowton ELM, Gibson (née Thomas) SE, Schneider MJ, Smith, MH. J. Chem. Soc., Chem. Commun. 1996; 839-840, and references therein.
- [9] Azzena U, Melloni G, Pisano L, Sechi B. Tetrahedron Lett. 1994; 35: 6759-6762.
- [10] Azzena U, Demartis S, Fiori MG, Melloni G, Pisano L. Tetrahedron Lett. 1995; 36: 5641-5644.
- [11] Krief A, Bousbaa J. Tetrahedron Lett. 1997; 38: 6289-6290.
- [12] Krief A, Bousbaa J. Tetrahedron Lett. 1997; 38: 6291-6294.
- [13] Schlosser M. Organoalkali reagents. In: Schlosser M, editor. Organometallics in synthesis, a manual. New York: John Wiley, 1994: 1-166, and references therein.
- [14] Waack R, Doran MA. J. Organometal. Chem. 1971; 29: 329-337.
- [15] Van Duzee EM, Adkins H. J. Am. Chem. Soc. 1935; 57: 147-151.
- [16] Stoochnoff BA, Benoiton NL. Tetrahedron Lett. 1973; 21-24.
- [17] MacDonald Bennet G, Hock AL. J. Chem. Soc. 1927; 472-476.
- [18] Takagishi S, Schlosser, M. Synlett 1991; 119-121.
- [19] Schlosser M, Maccaroni P, Marzi E. Tetrahedron 1998; 54: 2763-2770.
- [20] Snieckus V. Chem. Rev. 1990; 90: 879-933.
- [21] Tedesco R, Fiaschi R, Napolitano E. Synthesis 1995; 1493-1495.
- [22] Gualtieri F, Mordini A, Pecchi S, Scapecchi S. Synlett 1996; 447-448.
- [23] Kraus GA, Frazier KA, Roth BD, Taschner MJ, Neuenschwander K. J. Org. Chem. 1981; 46: 2417-2419.
- [24] Reppe W, Schichting O, Klager K, Toepel T. Liebigs Ann. Chem. 1948; 560: 1-92.